Gaze Estimation

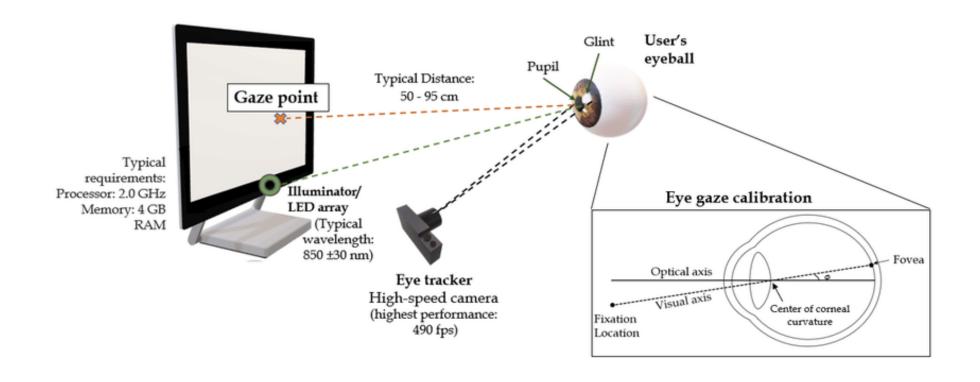
Gyanig Kumar

CSCI 7000: Recent Advances in Computer Vision

"Sarvendriyaanaam Nayanam Prad hanam" which loosely translates into, "Of all the sense organs, vision is the most important".

Pupil Invisible eye tracking glasses: Instant insight into human behavior (youtube.com) 2021

Introduction to Human Vision



Historical Perspective

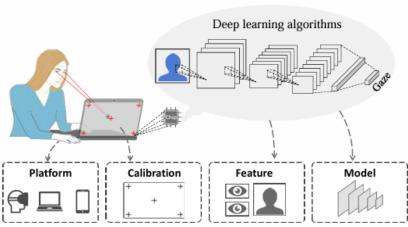
Early approaches to gaze estimation

(a) Mobile corneal reflex system (b) Head-mounted system (c) Head-mounted system

Historical Perspective

Early approaches to gaze estimation

(a) Mobile corneal reflex system (b) Head-mounted system (c) Head-mounted system



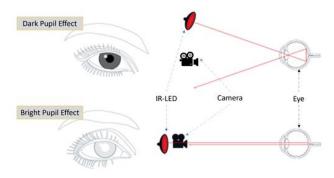
Modern Approach for Gaze Estimation

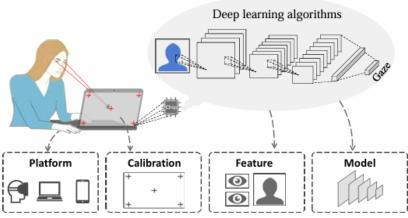
Historical Perspective

Early approaches to gaze estimation

(a) Mobile corneal reflex system (b) Head-mounted system (c) Head-mounted system

Building Wearable EyeTrackers

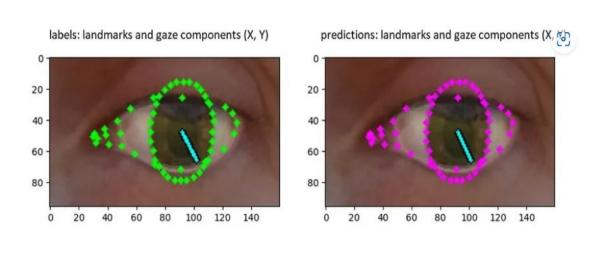


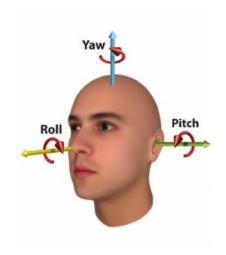


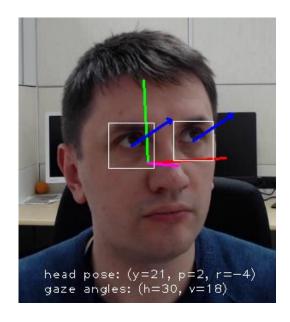
Modern Approach for Gaze Estimation

Credits: Appearance-based Gaze Estimation with Deep Learning: A Review and Benchmark, Gaze Direction Estimation · google/mediapipe, Tobii Eyetrackers

Understanding the Perspective







Pupil Detection

Gaze Estimation

Introduction

Discovery of Human Gaze movements basics Experimental psychology research Wearable Trackers came out

Deep learning

With introduction of Alex Net, first CNN based model for eye tracker introduced

 $1920-2017 \searrow 2015 \longrightarrow 2016 - 2019 \searrow 2021 \longrightarrow 2023$

Introduction

Discovery of Human Gaze movements basics Experimental psychology research Wearable Trackers came out

Deep learning

With introduction of Alex Net, first CNN based model for eye tracker introduced

1920-2017 ____ 2015 _

 $2016 - 00 \rightarrow 2019 0 \rightarrow 2021$

2023

Introduction

Discovery of Human Gaze movements basics Experimental psychology research Wearable Trackers came out

Dataset Work

Creating a dataset was biggest problem (Face+Eye):
MPIIGaze
GazeCapture
EyeDiap

Deep learning

With introduction of Alex Net, first CNN based model for eye tracker introduced

Attention based

CNN-Models started to adapt the newer attention based models for gaze estimation ECCV->CVPR workshop

1920-2017 vs 2015

2016- \longrightarrow 2019 \longrightarrow 2021

2023

Introduction

Discovery of Human Gaze movements basics Experimental psychology research Wearable Trackers came out

<u>Dataset Work</u>

Creating a dataset was biggest problem (Face+Eye):
MPIIGaze
GazeCapture
EyeDiap

Deep learning

With introduction of Alex Net, first CNN based model for eye tracker introduced

Attention based

CNN-Models started to adapt the newer attention based models for gaze estimation ECCV->CVPR workshop

1920-2017 vs 2015

2016- ///→ 2019 /

2021

2023

Introduction

Discovery of Human Gaze movements basics Experimental psychology research Wearable Trackers came out

Dataset Work

Creating a dataset was biggest problem (Face+Eye):
MPIIGaze
GazeCapture
EyeDiap

Transformers

New approach with Transformers
Large-Scale Dataset introduced:
EVE
ETH-Xgaze
Gaze360

Deep learning

With introduction of Alex Net, first CNN based model for eye tracker introduced

Attention based

CNN-Models started to adapt the newer attention based models for gaze estimation ECCV->CVPR workshop

Leaving traditional

First ever approach to building a end-to-end model without taking features from eyes + face

1920-2017 - 2015

2016- _{///_} 2019

₩→2019 **%**

2023

Introduction

Discovery of Human Gaze movements basics Experimental psychology research Wearable Trackers came out

Dataset Work

Creating a dataset was biggest problem (Face+Eye):
MPIIGaze
GazeCapture
EyeDiap

<u>Transformers</u>

New approach with Transformers
Large-Scale Dataset introduced:
EVE
ETH-Xgaze
Gaze360

What are we going to discuss?

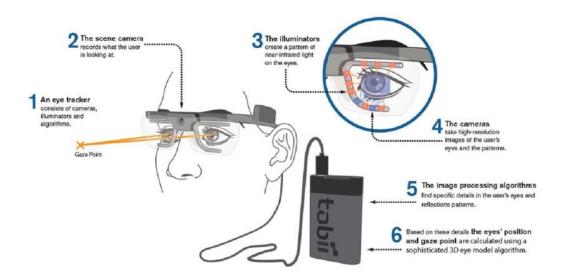
- Types of Gaze Estimation
- Datasets
- Evaluation Metrics of Gaze Estimation
- Appearance Based Gaze Estimation (AGE)
- End-to-End Frame-to-Gaze Estimation (EFE)
- Real World Case Study of Appearance Based Gaze Estimation

What are we going to discuss?

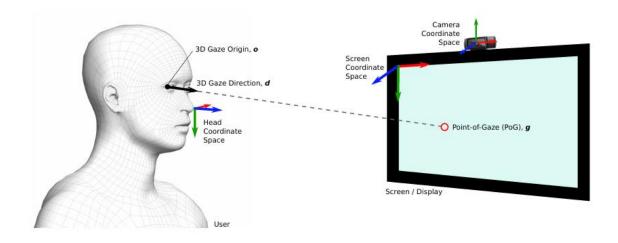
- Types of Gaze Estimation
- Datasets
- Evaluation Metrics of Gaze Estimation
- Appearance Based Gaze Estimation (AGE)
- End-to-End Frame-to-Gaze Estimation (EFE)
- Real World Case Study of Appearance Based Gaze Estimation

Types of Gaze Estimation

IR based Tracking



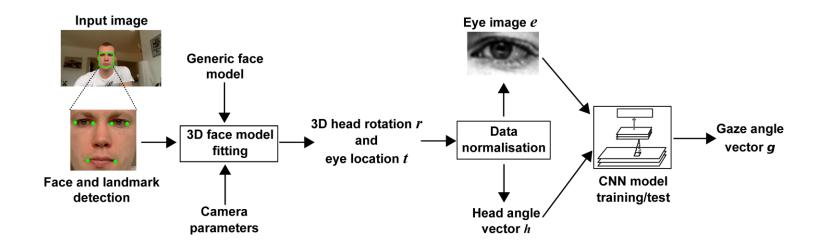
Webcam based Tracking



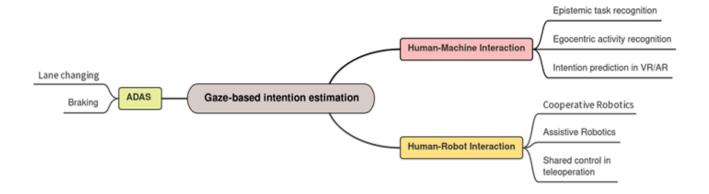
Also called the Appearance Based Gaze Estimation

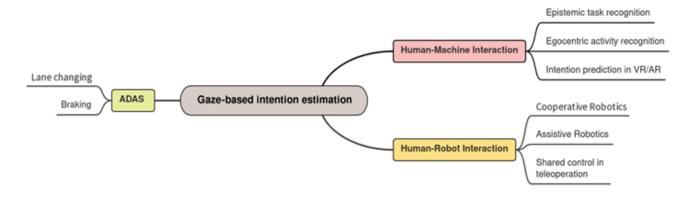
Different aspects of eye tracking

- Face tracking
- Face landmark
- Data normalization
- Gaze origin
- Gaze direction



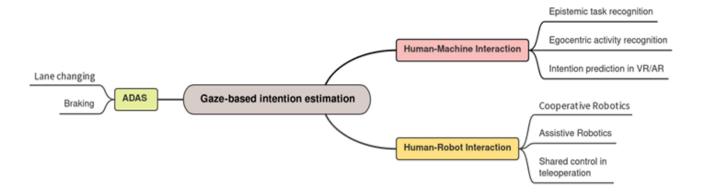
Introduction of MPIIGaze Dataset along with its CNN model



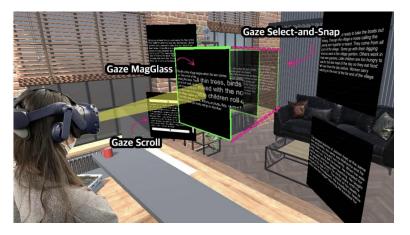


Gaze-based intention estimation: principles, methodologies, and applications in HRI (ANNA BELARDINELLI, Honda Research Institute Europe, Germany)

An End-to-End Review of Gaze Estimation and its Interactive Applications on Handheld Mobile Devices, https://www.mdpi.com/2218-6581/10/2/68/xml
https://flightsafety.org/asw-article/eyeing-the-eyes/, https://research.adobe.com/publication/vrdoc-gaze-based-interactions-for-vr-reading-experience/

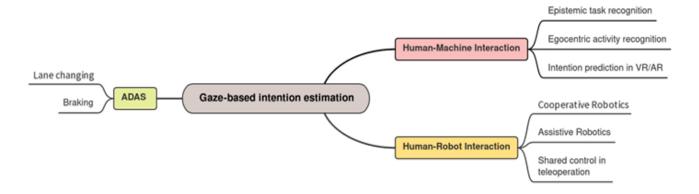


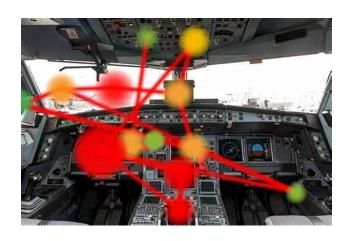


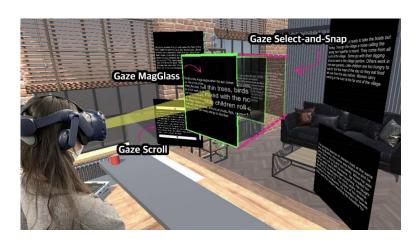


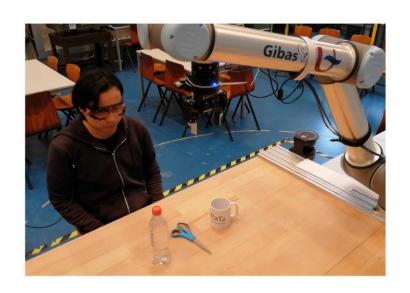
Gaze-based intention estimation: principles, methodologies, and applications in HRI (ANNA BELARDINELLI, Honda Research Institute Europe, Germany)

An End-to-End Review of Gaze Estimation and its Interactive Applications on Handheld Mobile Devices, https://www.mdpi.com/2218-6581/10/2/68/xml
https://flightsafety.org/asw-article/eyeing-the-eyes/, https://research.adobe.com/publication/vrdoc-gaze-based-interactions-for-vr-reading-experience/



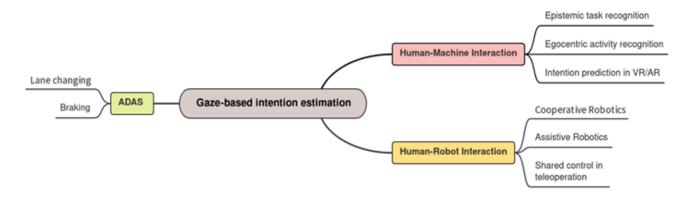


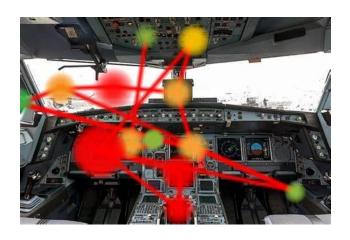


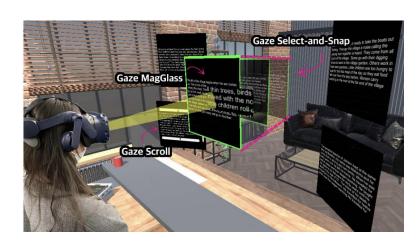


Gaze-based intention estimation: principles, methodologies, and applications in HRI (ANNA BELARDINELLI, Honda Research Institute Europe, Germany)

An End-to-End Review of Gaze Estimation and its Interactive Applications on Handheld Mobile Devices, https://flightsafety.org/asw-article/eyeing-the-eyes/, https://research.adobe.com/publication/vrdoc-gaze-based-interactions-for-vr-reading-experience/







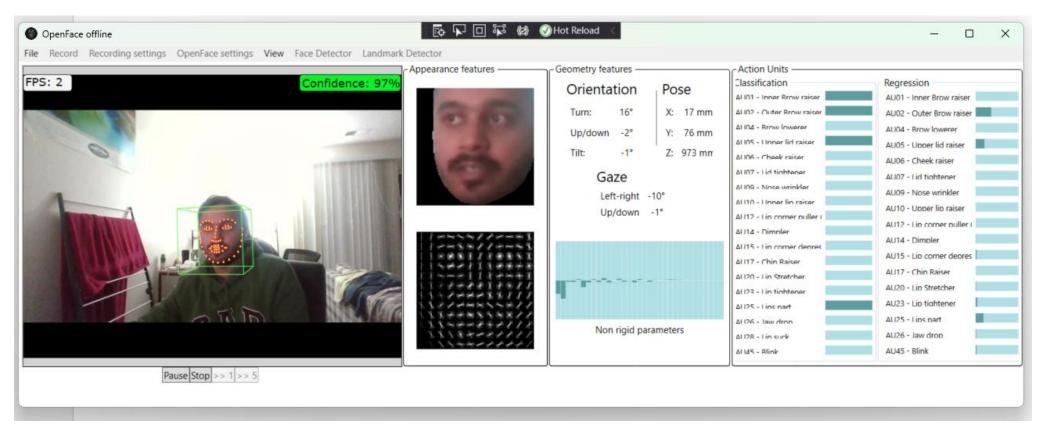
Gaze-based intention estimation: principles, methodologies, and applications in HRI (ANNA BELARDINELLI, Honda Research Institute Europe, Germany)

An End-to-End Review of Gaze Estimation and its Interactive Applications on Handheld Mobile Devices, https://www.mdpi.com/2218-6581/10/2/68/xml
https://research.adobe.com/publication/vrdoc-gaze-based-interactions-for-vr-reading-experience/">https://flightsafety.org/asw-article/eyeing-the-eyes/, https://research.adobe.com/publication/vrdoc-gaze-based-interactions-for-vr-reading-experience/

Other Applications?

Live Demo of Appearance Based Gaze Estimation

Live Demo of Appearance Based Gaze Estimation

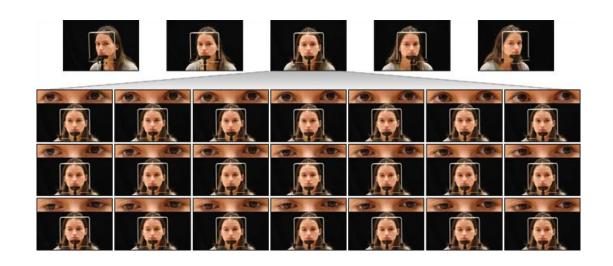


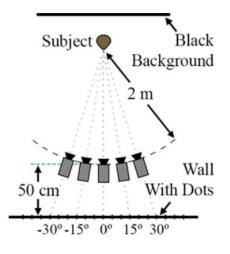
OpenFace Offline Gaze Estimation Demo

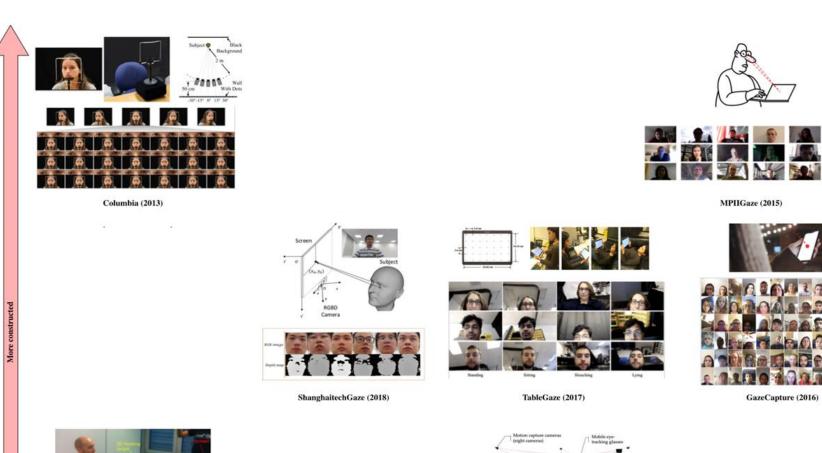
What are we going to discuss?

- Types of Gaze Estimation
- Datasets
- Evaluation Metrics of Gaze Estimation
- Appearance Based Gaze Estimation (AGE)
- End-to-End Frame-to-Gaze Estimation (EFE)
- Real World Case Study of Appearance Based Gaze Estimation

How to create the Datasets?







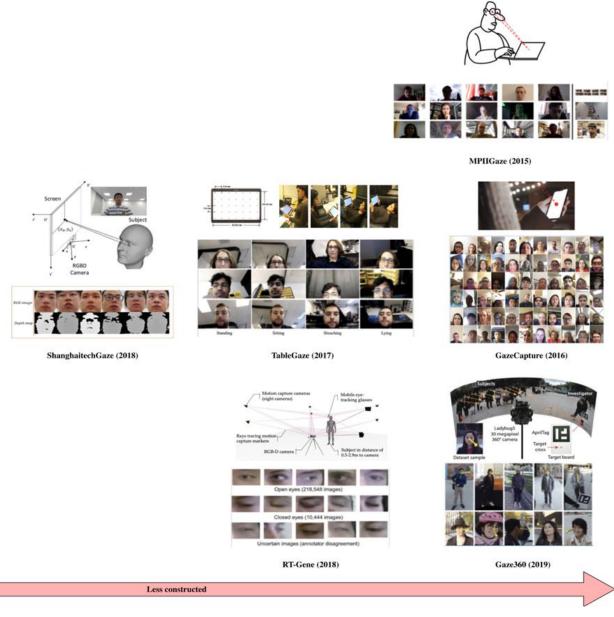
Lab setting vs in-the-wild

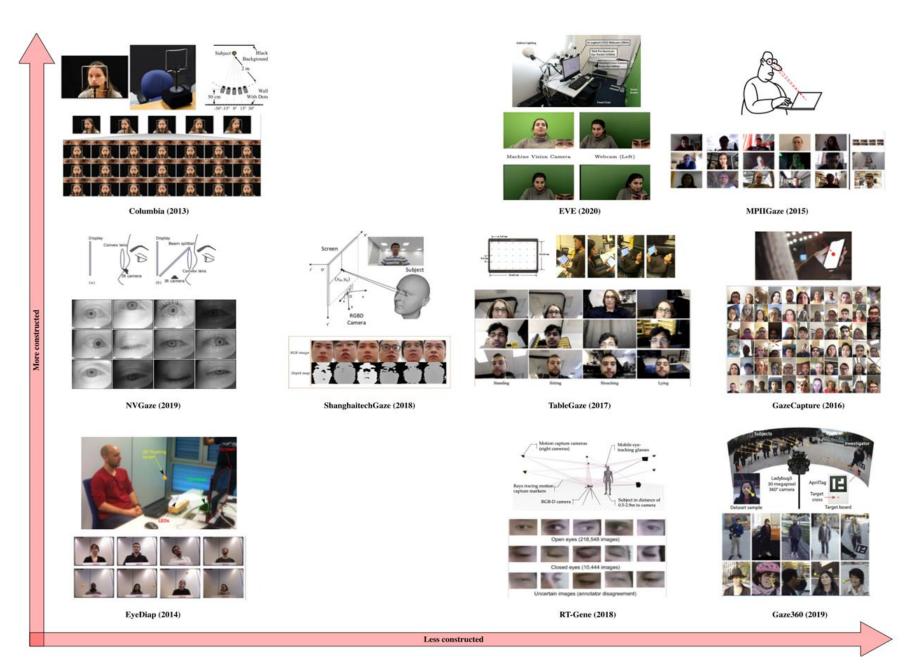
Less constructed

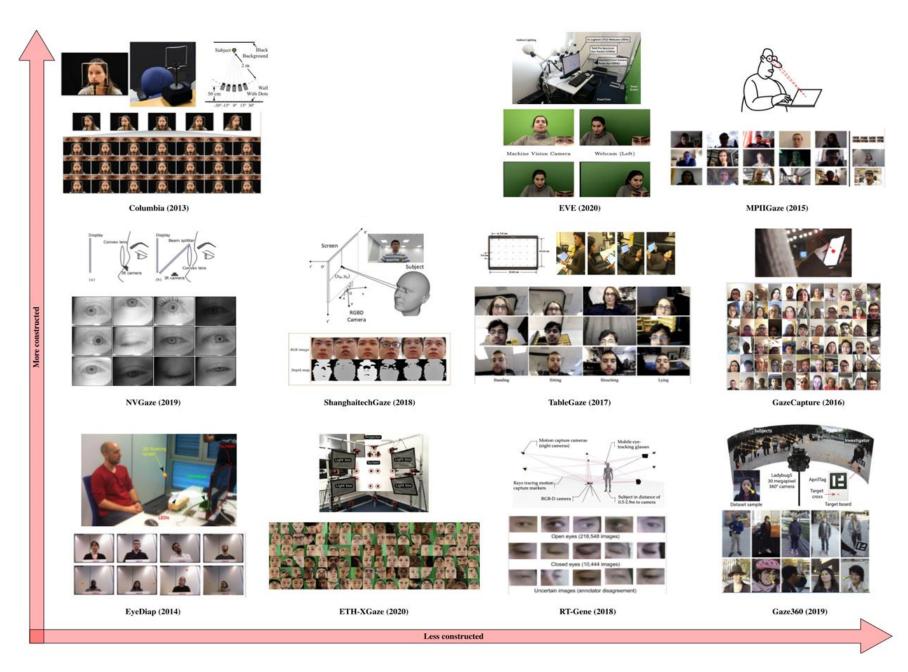
Columbia (2013) NVGaze (2019)

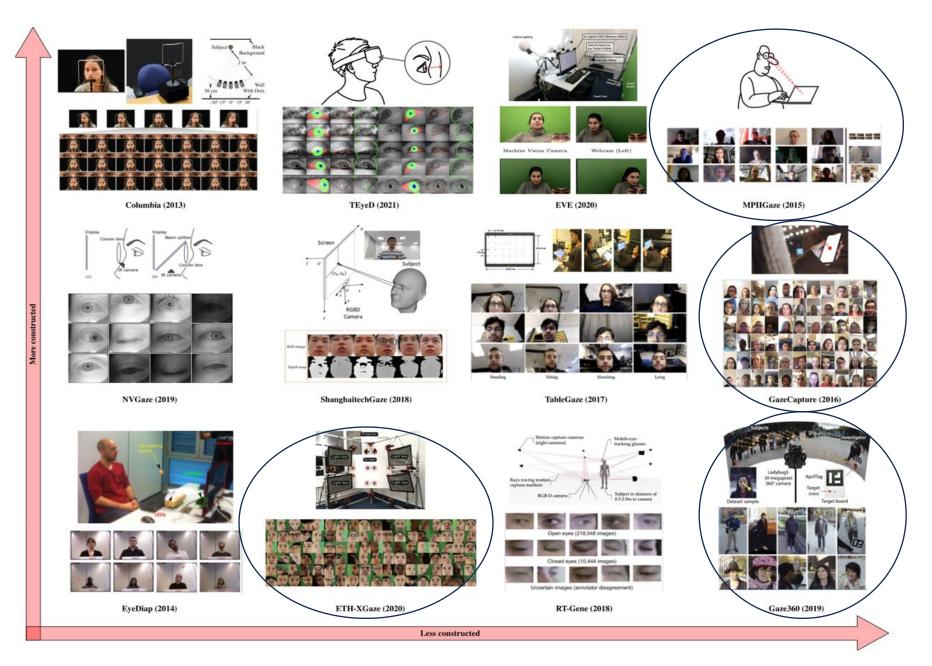
EyeDiap (2014)

Datasets





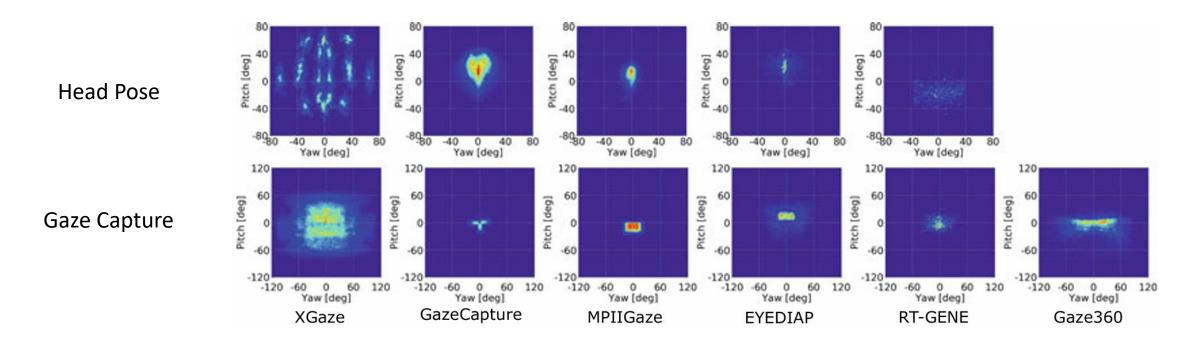




Gaze Plot of various datasets

How extensively do these gaze angles cover real world in each dataset?

Gaze Plot of various datasets



Area covered by these models are show the area of the gaze points collected via each dataset

What are some important aspects of dataset for appearance based gaze estimation?

COMPARISON OF 3-D GAZE ESTIMATION DATA SETS

Dataset	Channel	Full Face	Camera Number	Total	Subject	Distance	Gaze Pitch/Yaw	Head Pose Pitch/Yaw	
MPIIGaze[15]	RGB	No	1	213,659	15	40-60 cm	P[-48.94°, 13.05°]	P[-51.39°, 62.14°]	
WIFIIGaze[15]							Y[-52.38°, 44.07°]	Y[-73.14°, 73.14°]	
MPIIFACEGaze[28]	RGB	Yes	1	213,659	15	40-60 cm	P[-39.25°, 15.18°]	P[-45.58°, 66.32°]	
							Y[-45.26°, 36.99°]	Y[-81.71°, 101.93°]	
ColumbioCons[77]	RGB	Yes	5	5880	56	200 cm	P[-15.00°, 15.00°]	P[-00.00°, 00.00°]	
ColumbiaGaze[77]	KUD						Y[-10.00°, 10.00°]	Y[-30.00°, 30.00°]	
EYEDIAP[78]	RGB-D	Yes	2	94 videos	16	80-120 cm	P[-84.68°, 66.31°]	P[-48.95°, 66.68°]	
							Y[-162.28°, 168.91°]	Y[-95.99°, 94.80°]	
Gaze360°[74]	RGB	Yes	5	≈172K	238	≈ 220 cm	P[-78.22°, 89.26°]	er .	
							Y[-179.88°, 179.88°]		
NISLGaze[41]	RGB	Yes	1	2079 videos	21	90 cm	P[-21.48°, 20.76°]	~	
							Y[-21.25°, 21.04°]		
RT-GENE[55]	RGB-D	Yes	1	277,286	15	≈ 182 cm	P[-80.76°, 34.29°]	P[-63.39°, 26.70°]	
							Y[-50.89°, 66.69°]	Y[-37.49°, 37.50°]	
ShanghaiTechGaze[56]	RGB	Yes	3	233,796	137	~	P[0.09 cm, 33.44 cm]	~	
							Y[2.24 cm, 58.36 cm]		
UnityEye[62]	RGB	No	~	user-defined	~	user-defined	user-defined	user-defined	
UT-Multiview[5]	RGB	No	8	1,216,000	50	60 cm	P[-66.48°, 55.43°]	P[-35.51°, 41.93°]	
							Y[-77.92°, 80.80°]	Y[-39.90°, 38.78°]	
XGaze[79]	RGB	Yes	18	1,083,492	110	100 cm	P[-89.69°, 89.21°]	P[-89.50°, 89.31°]	
							Y[-178.99°, 177.05°]	Y[-148.27°, 175.6°]	

What are some important aspects of dataset for appearance based gaze estimation?

COMPARISON OF 3-D GAZE ESTIMATION DATA SETS

Dataset	Channel	Full Face	Camera Number	Total	Subject	Distance	Gaze Pitch/Yaw	Head Pose Pitch/Yaw
MPIIGaze[15]	RGB	No	1	213,659	15	40-60 cm	P[-48.94°, 13.05°]	P[-51.39°, 62.14°]
111111111111111111111111111111111111111	ROD	110	<u> </u>	215,057		40 00 cm	Y[-52.38°, 44.07°]	Y[-73.14°, 73.14°]
MPIIFACEGaze[28]	RGB	Yes	1	213,659	15	40-60 cm	P[-39.25°, 15.18°]	P[-45.58°, 66.32°]
							Y[-45.26°, 36.99°]	Y[-81.71°, 101.93°]
ColumbiaGaze[77]	RGB	Yes	5	5880	56	200 cm	P[-15.00°, 15.00°]	P[-00.00°, 00.00°]
							Y[-10.00°, 10.00°]	Y[-30.00°, 30.00°]
EYEDIAP[78]	RGB-D	Yes	2	94 videos	16	80-120 cm	P[-84.68°, 66.31°]	P[-48.95°, 66.68°]
212211[,0]							Y[-162.28°, 168.91°]	Y[-95.99°, 94.80°]
Gaze360°[74]	RGB	Yes	5	≈172K	238	$\approx 220~\text{cm}$	P[-78.22°, 89.26°]	~
							Y[-179.88°, 179.88°]	
NISLGaze[41]	RGB	Yes	1	2079 videos	21	90 cm	P[-21.48°, 20.76°]	~
							Y[-21.25°, 21.04°]	
RT-GENE[55]	RGB-D	Yes	1	277,286	15	≈ 182 cm	P[-80.76°, 34.29°]	P[-63.39°, 26.70°]
111 02112[00]							Y[-50.89°, 66.69°]	Y[-37.49°, 37.50°]
ShanghaiTechGaze[56]	RGB	Yes	3	233,796	137		P[0.09 cm, 33.44 cm]	~
							Y[2.24 cm, 58.36 cm]	
UnityEye[62]	RGB	No	~	user-defined	~	user-defined	user-defined	user-defined
UT-Multiview[5]	RGB	No	8	1,216,000	50	60 cm	P[-66.48°, 55.43°]	P[-35.51°, 41.93°]
							Y[-77.92°, 80.80°]	Y[-39.90°, 38.78°]
XGaze[79]	RGB	Yes	18	1,083,492	110	100 cm	P[-89.69°, 89.21°]	P[-89.50°, 89.31°]
							Y[-178.99°, 177.05°]	Y[-148.27°, 175.6°]

Synthetic

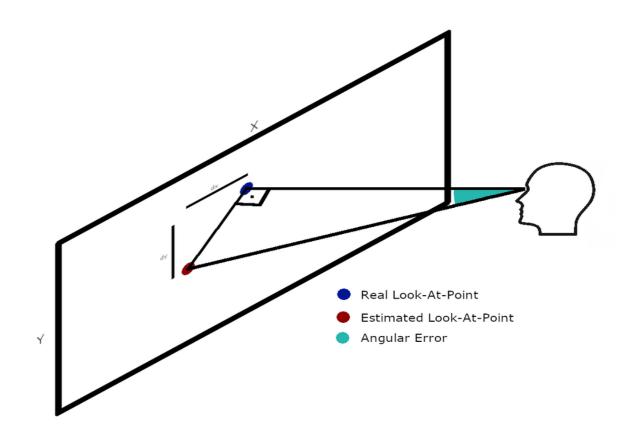
Datasets

Credits: Appearance-based Gaze Estimation with Deep Learning: A Review and Benchmark,
Gaze Direction Estimation · google/mediapipe, Tobii Eyetrackers

What are we going to discuss?

- Types of Gaze Estimation
- Datasets
- Evaluation Metrics of Gaze Estimation
- <u>Appearance Based Gaze Estimation (AGE)</u>
- End-to-End Frame-to-Gaze Estimation (EFE)
- Real World Case Study of Appearance Based Gaze Estimation

Evaluation Metrics of Gaze Estimation



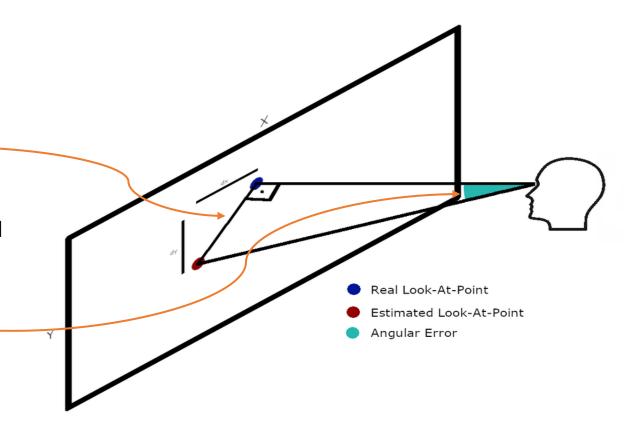
Evaluation Metrics of Gaze Estimation

L2 Distance:

The primary metric used to evaluate the accuracy of 2D gaze point estimation

Angular Error:

The predicted gaze direction vector is produced by connecting the head point to the predicted gaze point



Evaluation Metrics of Gaze Estimation

L2 Distance:

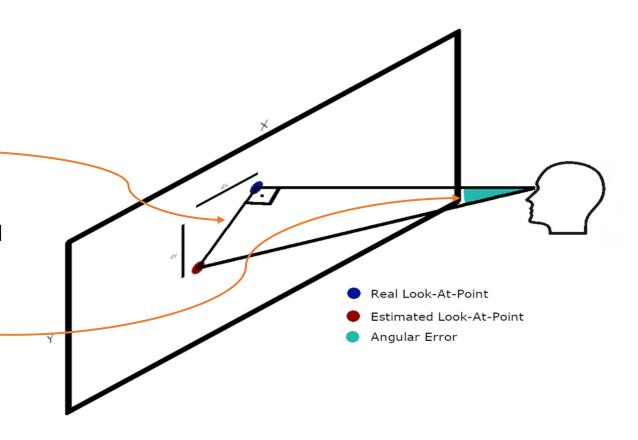
The primary metric used to evaluate the accuracy of 2D gaze point estimation

Angular Error:

The predicted gaze direction vector is produced by connecting the head point to the predicted gaze point

Other Metrics:

- Mean Angular Error (MAE)
- 2. Mean Square Error (MSE)
- 3. Average Precision (AP)
- 4. Classification Accuracy



What are we going to discuss?

- Types of Gaze Estimation
- Datasets
- Evaluation Metrics of Gaze Estimation
- <u>Appearance Based Gaze Estimation (AGE)</u>
- End-to-End Frame-to-Gaze Estimation (EFE)
- Real World Case Study of Appearance Based Gaze Estimation

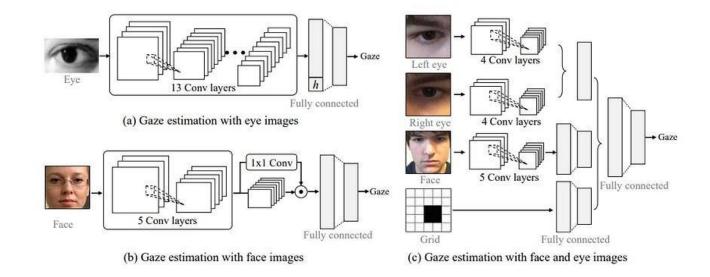
Appearance Based Gaze Estimation

What can Model adapt to?

- Person specific
- Person Independent

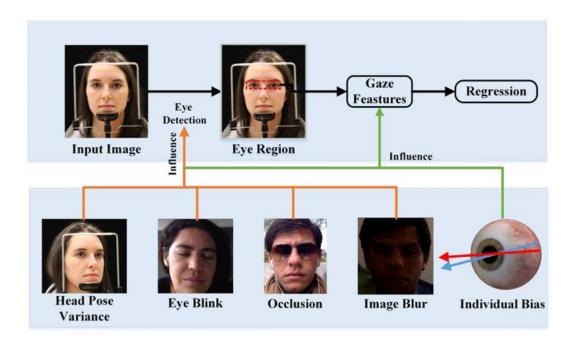
Calibrations Requirement

- 1. No calibration
- 2. One point calibration
- 3. Multiple point calibration



What are some of the problems in Appearance Based Gaze Estimation?

Problems in Appearance based Gaze Estimation



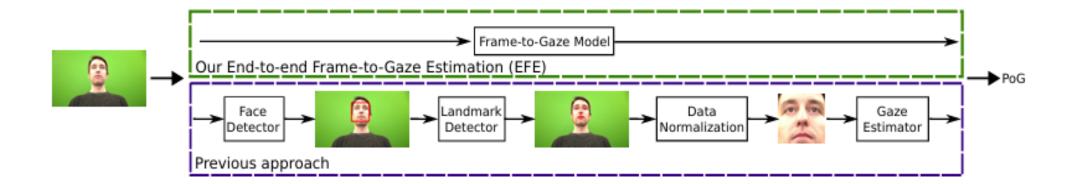
Overview of a simple gaze estimation which consist of eye detection, feature extraction, and gaze regression. Challenges of gaze estimation are head pose variance, eye blink, occlusion, blur images and individual bias.

What are we going to discuss?

- Types of Gaze Estimation
- Datasets
- Evaluation Metrics of Gaze Estimation
- Appearance Based Gaze Estimation (AGE)
- End-to-End Frame-to-Gaze Estimation (EFE)
- Real World Case Study of Appearance Based Gaze Estimation

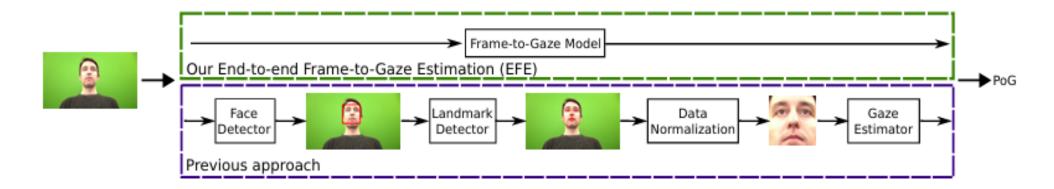
EFE: End to end frame to gaze estimation

New approach in Gaze estimation = Forget the old approach completely



EFE: End to end frame to gaze estimation

New approach in Gaze estimation = Forget the old approach completely



Goal of the new approach

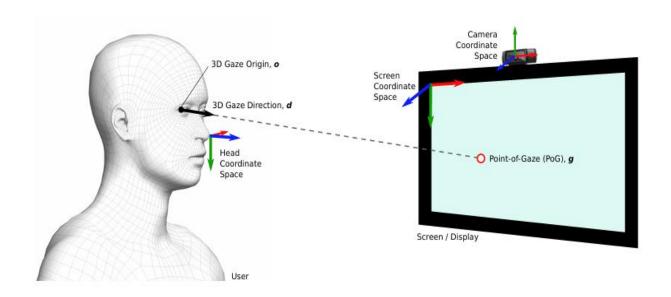
directly regresses a 6D gaze ray i.e. (3D origin and 3D direction)
Use frames of the images without preprocessing as the model input

Main Challenges in new approach

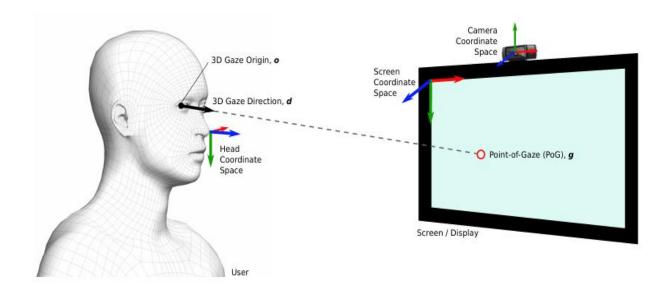
Small Eye Region
Gaze Origin Estimation

How did we get there?

Looking at the traditional approach using the webcam.....



Looking at the traditional approach using the webcam.....



Main assumptions of the approach:

- Person head pose is co-planar to the screen i.e it always faces the screen
- Calculating the 3D head translation estimation from a 2D image without any error
- Diverse head pose with corresponding gaze points calculated
- Ground truth of the datasets are perfect

Before we go into the related works....

Prof. Danna asks:

How do you find the Gaze Direction for each person in the image?

Prof. Danna asks:

How do you find the Gaze Direction for each person in the image?

I pointed them out like this.

Prof. Danna asks:

How do you find the Gaze Direction for each person in the image?

I pointed them out like this.

Prof. Danna asks:

How would you find it doing the current approaches in computer vision that was taught in the class?

Prof. Danna asks:

How do you find the Gaze Direction for each person in the image?

I pointed them out like this.

Prof. Danna asks:

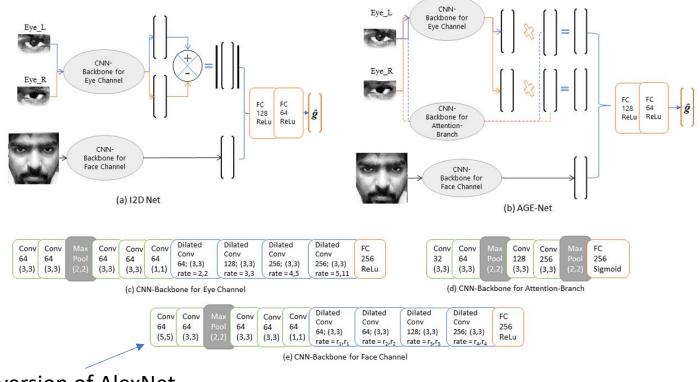
How would you find it doing the current approaches in computer vision that was taught in the class?

Vision Transformers ? Attention Models ? Feature pyramids ? Larger Datasets ?

Utterly Confused?

CNN based learning

How do we extend the CNN's learning capabilities?



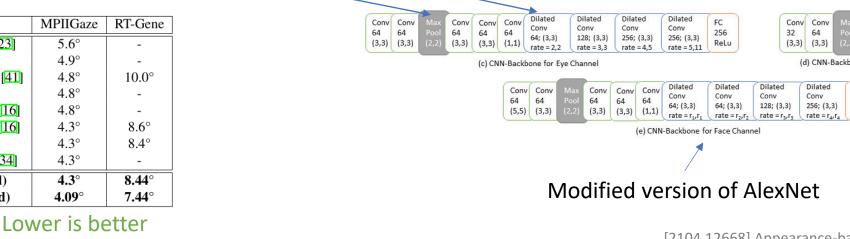
Modified version of AlexNet

CNN based learning

How do we extend the CNN's learning capabilities?

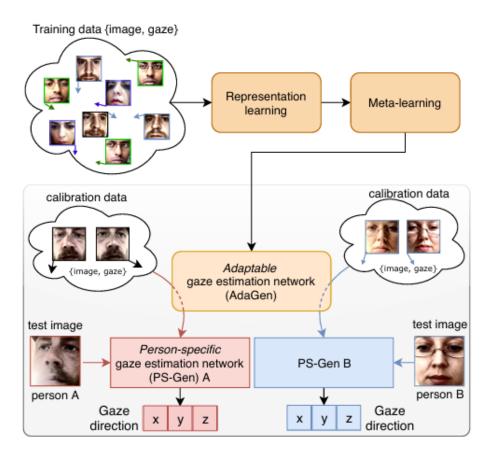
- 1. Learning Eye Independent features
- 2. Modification of model layers
- Diluted Convolution -
- Global Max Pooling
- Ensemble model approach

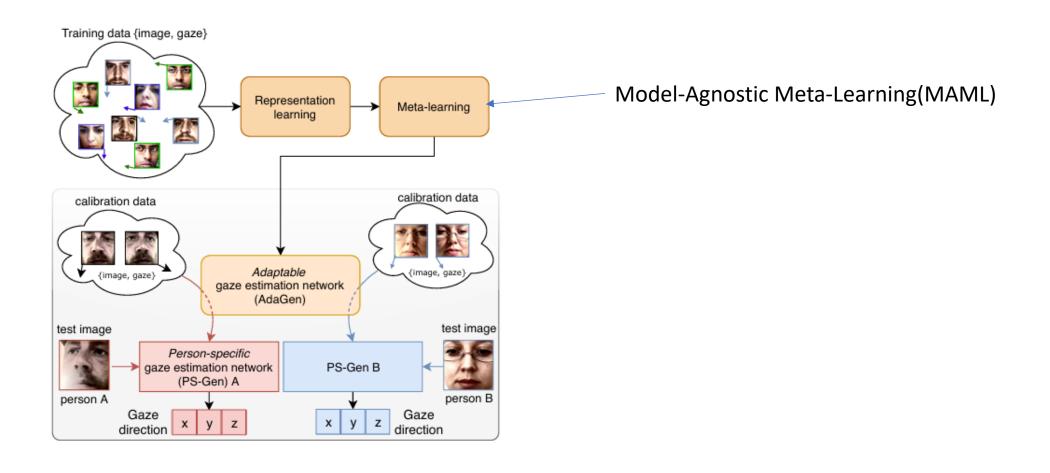
Model	MPIIGaze	RT-Gene
iTracker (AlexNet) [23]	5.6°	-
MeNet [35]	4.9°	-
Spatial-Weights CNN [41]	4.8°	10.0°
Dilated-Net [9]	4.8°	-
RT-GENE (1 model) [16]	4.8°	-
RT-GENE (4 model) [16]	4.3°	8.6°
FAR* Net [12]	4.3°	8.4°
Bayesian Approach [34]	4.3°	-
I2D-Net (Proposed)	4.3°	8.44°
AGE-Net (Proposed)	4.09°	7.44°

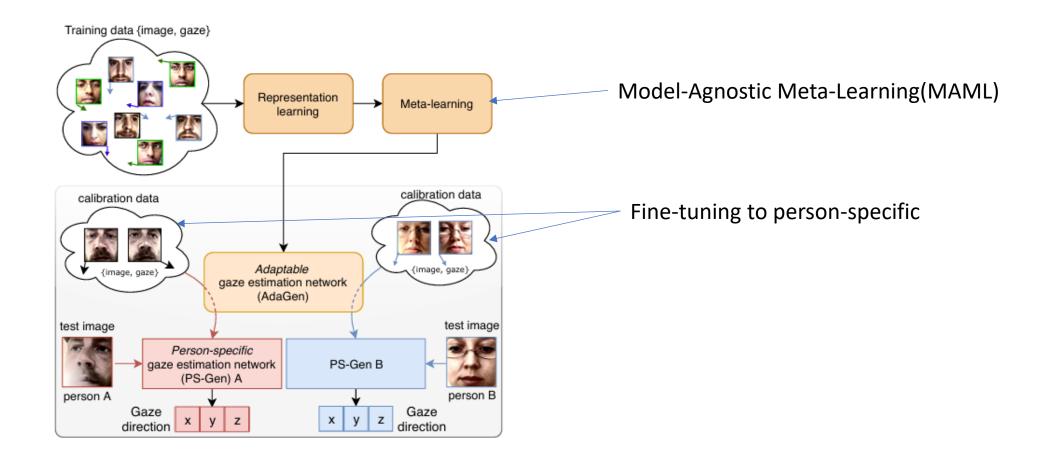


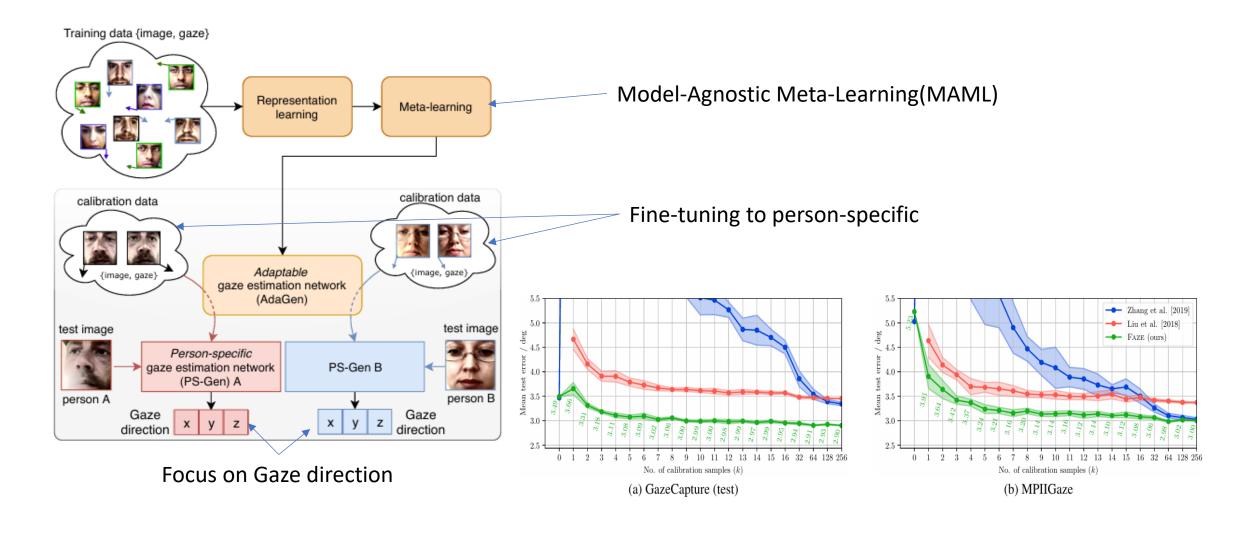
Eye_L

Backbone for

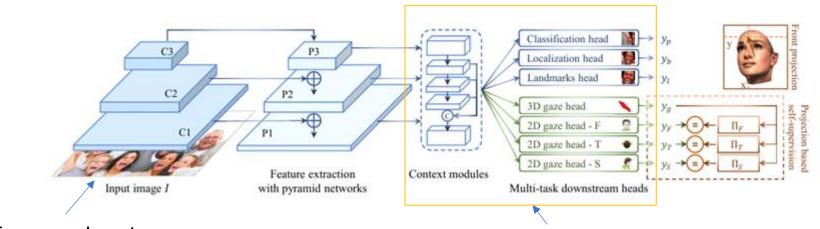








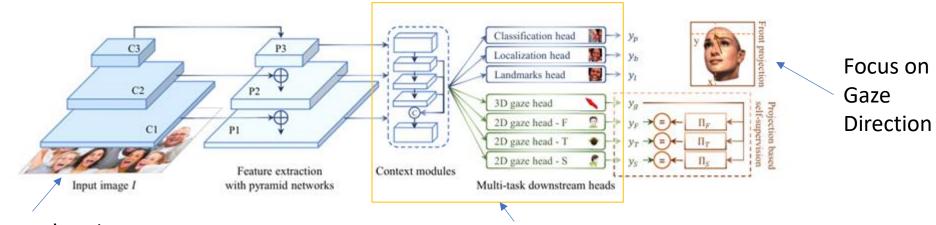
Gaze Once



Frame as Input

optimizing face localization and gaze estimation

Gaze Once

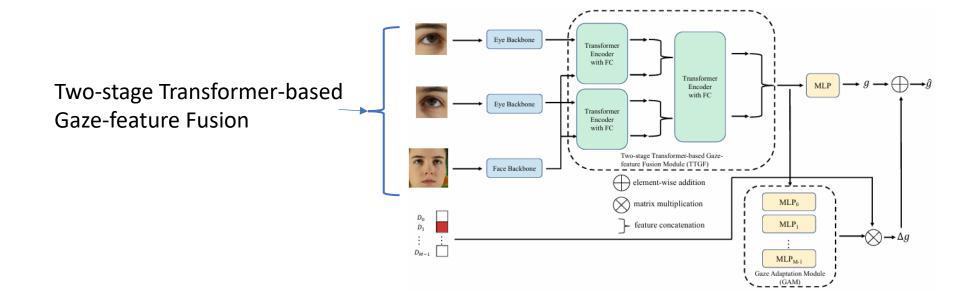


Frame as Input

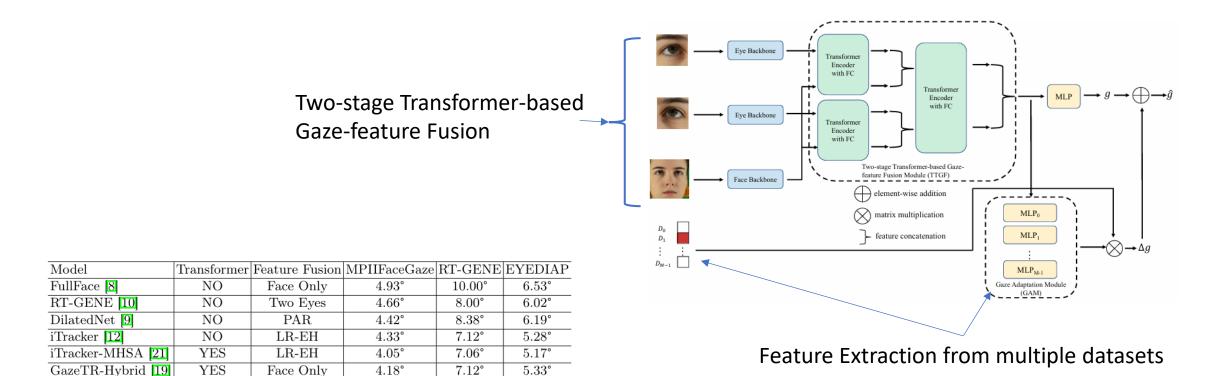
optimizing face localization and gaze estimation

Method Ba	Backbone	Input	Gaze error (lower is better) w.r.t. the width of					f faces		
	Backbolle	Input	30-60	60-90	90-120	120-150	150-180	180-210	210-240	>240
Full-face	AlexNet	1 normalized face	24.99	20.00	17.56	17.03	16.47	14.74	13.43	12.31
ETH-18	ResNet18	1 normalized face	28.89	21.93	16.66	14.90	14.33	12.44	11.68	10.32
ETH-50	ResNet50	1 normalized face	29.82	21.87	16.93	14.76	13.87	11.79	11.13	9.98
GazeTR	ResNet18	1 normalized face	24.51	16.84	14.59	13.37	13.65	11.72	10.71	9.96
Ours	MobileNet0.25	1 full image	22.94	17.55	13.69	11.08	<u>11.13</u>	<u>9.41</u>	<u>8.17</u>	<u>7.74</u>
Ours	ResNet50	1 full image	21.17	13.77	10.58	7.9	8.57	6.68	6.01	5.56

Transformers with Gaze Adaptation Module



Transformers with Gaze Adaptation Module



YES

YES

Face Only

EH-LR

4.04°

 3.88°

7.00°

 6.46°

5.25°

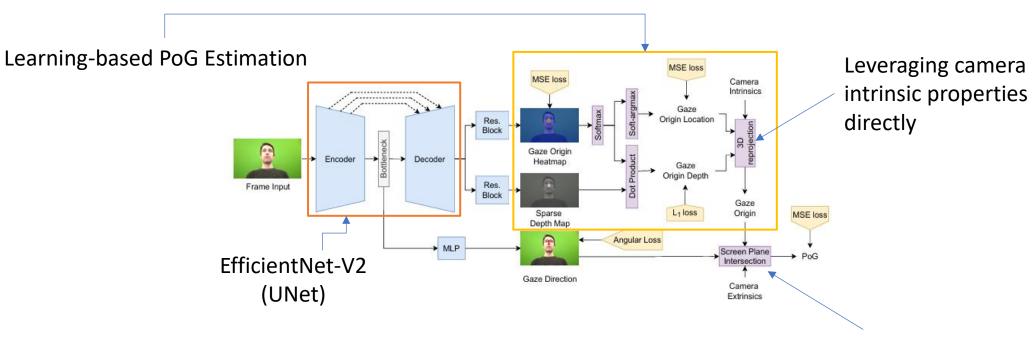
 4.89°

GazeCADSE 42

Proposed

What are we still missing?

End-to-End Frame-to-Gaze Estimation (EFE)



Leveraging camera intrinsic properties directly

Predicting Gaze Origin



Heatmap Prediction:

$$\mathcal{L}_{\mathbf{heatmap}} = \frac{1}{n} \sum_{i=1}^{n} \lVert \mathbf{h} - \hat{\mathbf{h}} \rVert_{2}^{2},$$

Sparse depth map loss:

$$\mathbf{z} = \mathbf{h} \cdot \mathbf{d}$$
 $\mathcal{L}_d = \|\mathbf{z} - \hat{\mathbf{z}}\|_1$,

2D location of gaze origin loss:

$$\mathcal{L}_{\mathbf{g}} = \|\mathbf{g} - \hat{\mathbf{g}}\|_2^2,$$

h: The 2D gaze origin heatmap

d: The Sparse depth map

g: 2D position of gaze origin predicted using h

z: The gaze depth

 $\hat{\mathbf{h}}$: The ground truth heatmap generated by drawing a 2D Gaussian centered at the gaze origin

 \widehat{g} : The ground truth gaze location on the cameraframe

Calculating the Origin of 3D Gaze

$$K = egin{bmatrix} f_x & 0 & c_x \ 0 & f_y & c_y \ 0 & 0 & 1 \end{bmatrix}$$

1. camera intrinsic matrix K

- 2. The 2D Gazing Point Coordinates g = (x, y)
- 3. The 2D Gazing Point Depth_d

1. Normalize 2D gaze points

$$u = \frac{x - c_x}{f_x}$$
$$v = \frac{y - c_y}{f_y}$$

2. Calculate the origin of 3D gaze

$$egin{bmatrix} x \ y \ z \ 1 \end{bmatrix} = K^{-1} egin{bmatrix} u \ v \ 1 \end{bmatrix} \cdot d$$

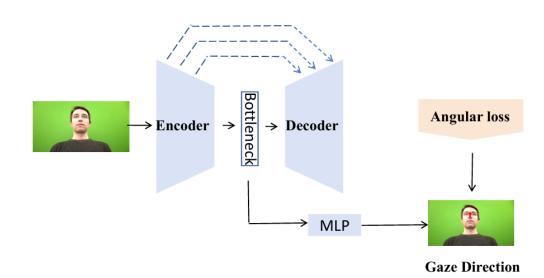
3. Finally obtaining 3D gaze point o = (x, y, z)

Predicting Gaze Direction

Gaze Direction loss:

$$\mathcal{L}_{\mathbf{r}} = \arccos\left(\frac{\hat{\mathbf{r}} \cdot \mathbf{r}}{\|\hat{\mathbf{r}}\| \|\mathbf{r}\|}\right)$$

We can obtain the 3D gaze direction (r).

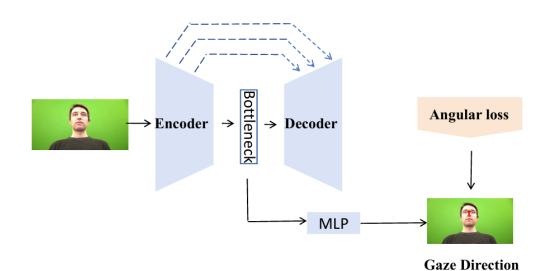


Predicting Gaze Direction

Gaze Direction loss:

$$\mathcal{L}_{\mathbf{r}} = \arccos\left(\frac{\hat{\mathbf{r}} \cdot \mathbf{r}}{\|\hat{\mathbf{r}}\| \|\mathbf{r}\|}\right)$$

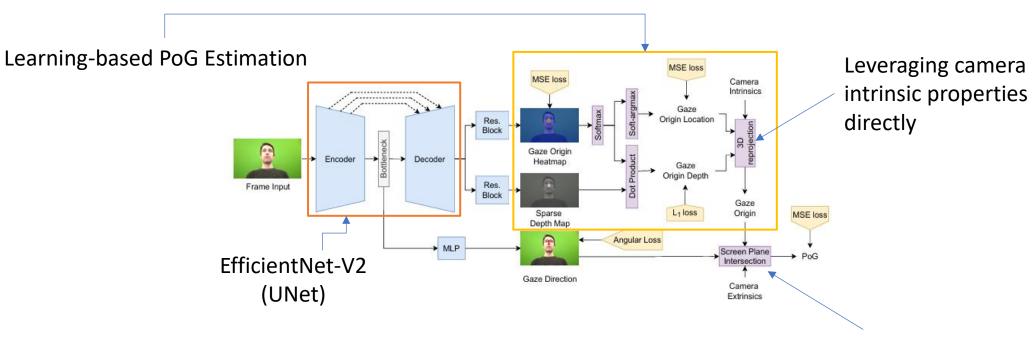
We can obtain the 3D gaze direction (r).



Total Loss

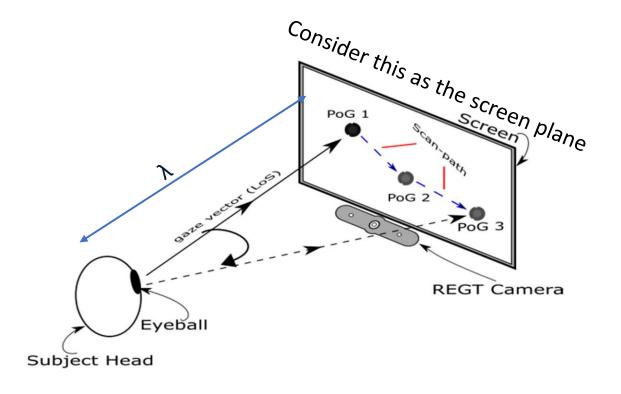
$$\mathcal{L}_{\textbf{Total}} = \lambda_g \mathcal{L}_{\textbf{g}} + \lambda_h \mathcal{L}_{\textbf{heatmap}} + \lambda_d \mathcal{L}_{\textbf{d}} + \lambda_r \mathcal{L}_{\textbf{r}} + \lambda_{PoG} \mathcal{L}_{\textbf{PoG}}$$

End-to-End Frame-to-Gaze Estimation (EFE)

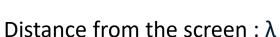


Leveraging camera intrinsic properties directly

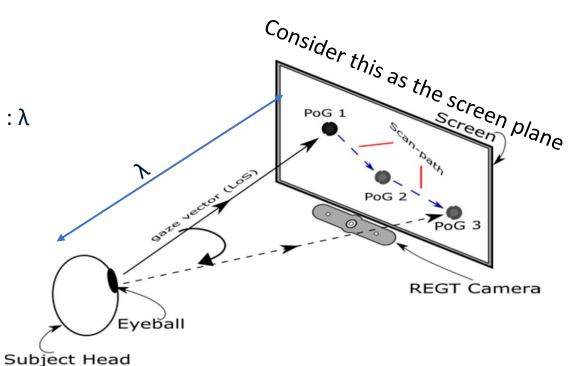
Calculating the Point of Gaze(PoG)



Calculating the Point of Gaze(PoG)



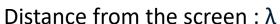
$$\lambda = \frac{r \cdot n_s}{(a_s - o) \cdot n_s}$$



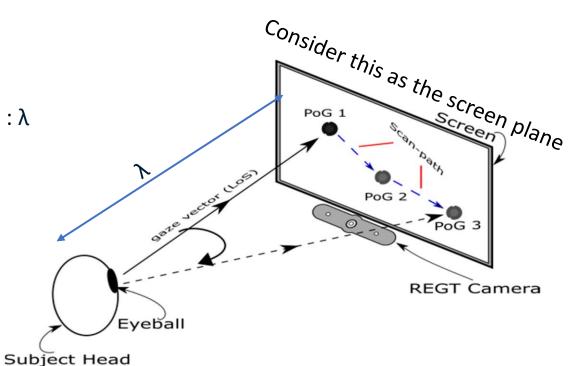
Intersection of the line of sight with the screen plane

$$p = o + \lambda r$$

Calculating the Point of Gaze(PoG)



$$\lambda = \frac{r \cdot n_s}{(a_s - o) \cdot n_s}$$



Intersection of the line of sight with the screen plane

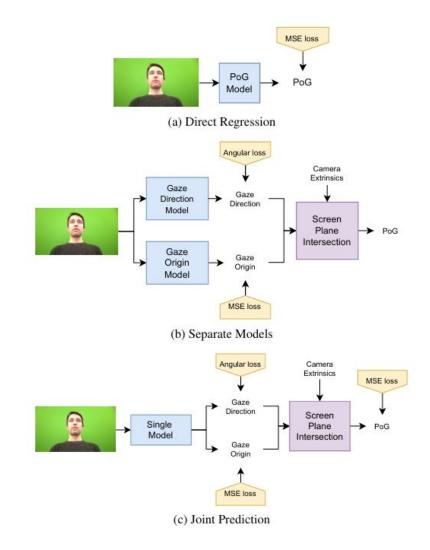
$$p = o + \lambda r$$

PoG estimation

$$L_{PoG} = ||p - \widehat{p}||_2^2$$

Baseline Models for EFE

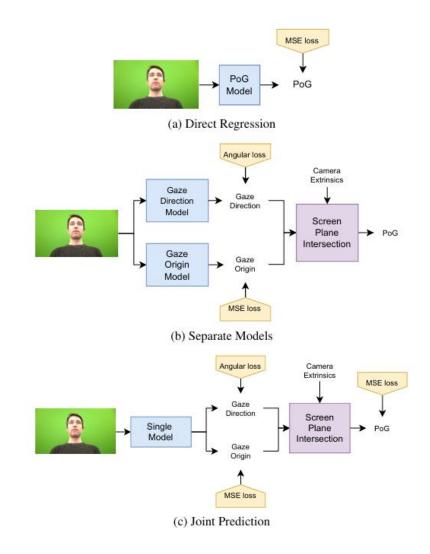
How to understand the importance of this complex model?



Baseline Models for EFE

How to understand the importance of this complex model?

We perform ablation study to understand the model.



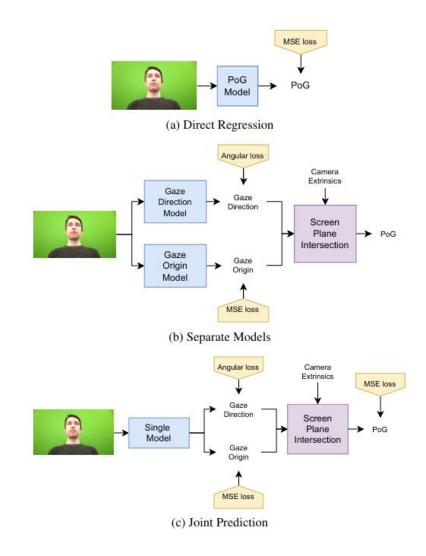
Baseline Models for EFE

How to understand the importance of this complex model?

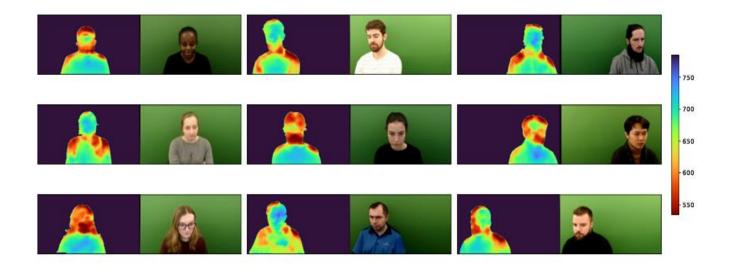
We perform ablation study to understand the model.

Model	Heatmap pred.	Depth map pred.	Gaze Origin (mm)	Gaze Dir. (°)	PoG (px)
Direct Regression			-	-	143.83
Separate Models			16.18	3.63	141.35
Joint Prediction			20.14	3.73	143.39
EFE w/o depth map	\checkmark		18.28	3.82	146.82
EFE (ours)	✓	✓	16.07	3.53	133.73

So, Depth is important feature contributing to PoG estimation



Importance of Heatmaps



Supervises the distance of the person from screen

Experimentation

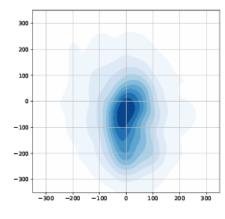
Model	Inputs	GazeDir.(°)	PoG(px)
EyeNet (static)	Right Eye	4.75	181.0
EyeNet (static)	Left Eye	4.54	172.7
FaceNet	Face	3.47	134.10
EFE(ours)	Frame	3.53	133.73

Model	Inputs	PhonePoG	TabletPoG
iTracker	Face&Eyes	2.04	3.32
iTracker (train aug)	Face&Eyes	1.86	2.81
SAGE	Eyes	1.78	2.72
TAT	Face	1.77	2.66
AFF-Net	Face&Eyes	1.62	2.30
EFE(ours)	Frame	1.61	<u>2.48</u>

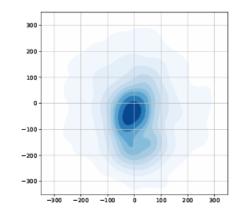
Model	Input	GazeDir.(°)	PoG(mm)
Full-Face	Face	4.8	42.0
FAR-Net*	Face&Eyes	4.3	-
AFF-Net	Face&Eyes	4.4	39.0
EFE(ours)	Frame	<u>4.4</u>	38.9

3. Comparison with state-of-the-art methods on the **MPIIFaceGaze** dataset.

PoG residual Maps on EVE Dataset



Traditional Approach



New EFE approach

^{1.} Comparison with state-of-the-art methods on the **EVE** dataset.

^{2.} Comparison with state-of-the-art methods on the **GazeCapture** dataset.

What are we going to discuss?

- Types of Gaze Estimation
- Datasets
- Evaluation Metrics of Gaze Estimation
- Appearance Based Gaze Estimation (AGE)
- <u>End-to-End Frame-to-Gaze Estimation (EFE)</u>
- Real World Case Study of Appearance Based Gaze Estimation

User Evaluation

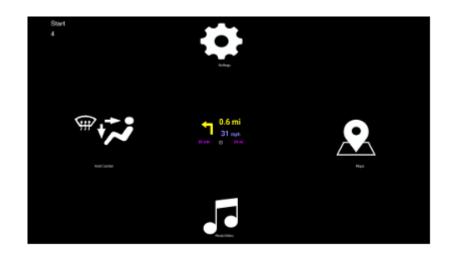


Fig. 3. User Interface Design on Head Up Display

Study Statistics:

 8 (5 Male; 1 left handed, Avg. Age: 24.75yr) participants (None of the participants had any motor impairment or color blindness)

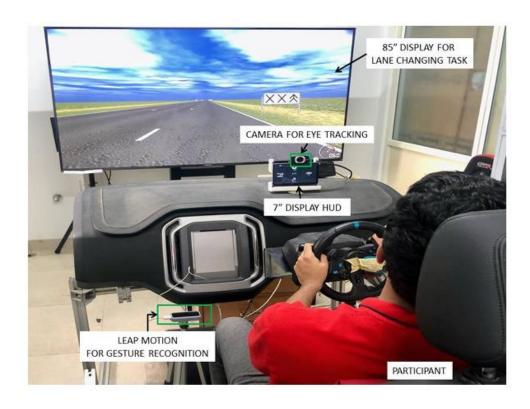
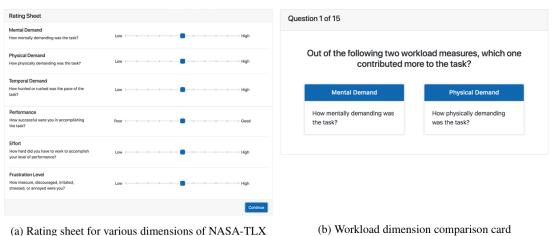


Fig. 2. Illustration of the Experimental Setup

Understanding Subjective Analysis



26.67 100 75 Performance 50 Mental Demand Frustration Physical Temporal Level Demand Demand 25 Effort Importance Weight Overall Workload score score

Conclusion

NASA TLX (task load index) & SUS(system usability study)

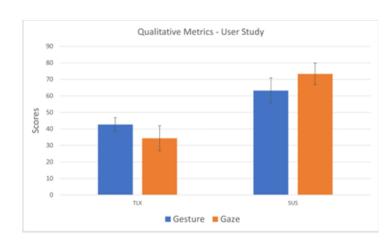


Fig. 5. Qualitative Metrics with Gaze and Gesture Interfaces

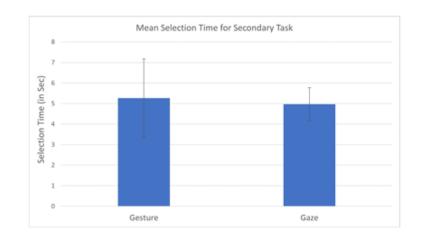


Fig. 6. Mean Selection Time with Gesture & Gaze

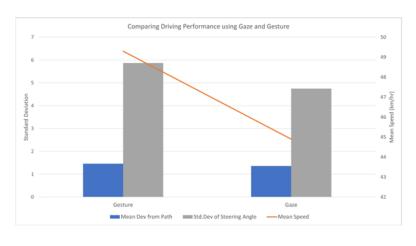


Fig. 4. Comparison of Primary Driving Task Parameters with Gaze and Gesture Interfaces

Applications on Automotive Driving?

Questions?

Thank you